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Abstract

This paper presents a new mathematical technique for the identification of two rheological model functions (namely, the hindered settling
and effective solid stress functions) obtained from concentration profiles measured during the centrifugation of flocculated suspensions. We
consider both a rotating tube and a basket centrifuge at a given angular velocity, and assume that the radius (i.e., the distance to the center o
rotation) is the only spatial coordinate. The governing equation is a non-standard strongly degenerate parabolic partial differentialequation fo
the solids volume fraction as a function of radius and time whose coefficients involve the model functions. We present a numerical technique
for the parameter identification problem suitable for this type of equations, and apply it to determine the model functions in two numerical
examples.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction lies in the absence of effective solid stress whenever the par-
ticles are in hindered settling, that is, whenever their volume
Solid-liquid separation or dewatering processes of floc- fractiong does notexceed a critical concentration or gel point
culated suspensions, including the unit operations of thick- ¢¢. In this case, the sedimentation-consolidation equation de-
ening, clarification, centrifugation and filtration, can be mod- generates into the first-order conservation law of Kynch’s
eled by a recent theory of sedimentation-consolidation pro- well-known kinematic sedimentation thed8y9], which was
cesses developed [d—3]. This theory is equivalent to the extended to the centrifugation of suspensiorfd@11] The
theory of suspension dewatering utilized[#+-7] (see also unusual type-change feature of the governing partial differ-
the references cited in these works). Whenever the processntial equation made a deep mathematical analysis of de-
considered admits a spatially one-dimensional description, generate parabolic equations necessary (see, for example,
the sedimentation-consolidation model reduces to a second{12-15)). The benefits of this research for the engineering
order parabolic scalar partial differential equation for the lo- community are reliable numerical methods for the simula-
cal solids volume fractiog as a function of the spatial coor-  tion of solid-liquid separation process|g$,17] Numerous
dinate and time. The coefficients of this governing equation comparisons with experimental ddf8,19] confirmed that
involve two material specific model functions characterizing the sedimentation-consolidation model indeed is a useful tool
the suspension under study, the hindered settling or Kynchfor the simulation, control and design of solid—liquid separa-
batch flux density functiofpk(¢) and the effective solid stress  tion processef20,21]
functionoe(¢). A particular feature of the governing equation In spite of all these advances, one mandatory prerequisite
for the application of the sedimentation-consolidation the-
m onding author ory, namely the necessity to determine the functifypép)
E—mailpaddregses:berres@mathematik.uni—stuttgart.de (S. Berres), andog(¢) by experimentation, has persisted. Recent reports

buerger@mathematik.uni-stuttgart.de (Rirger), acoronel@roble.fdo-  Of e?(perimental FeChniqlf?S aiming at d_etermining t.hese. or
may.ubiobio.cl (A. Coronel), mauricio@ing-mat.udec.cl (M. Ggpda). equivalent material specific model functions by settling, fil-
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tration, and centrifugation inclug@2-32,5,7] respectively. the discussion is limited to two particular parametric forms
The present paper, as our previous stufids34] presentsan  of the functiondpk(¢) andoe(¢). This makes the parameter
accurate and automatic mathematical technique to extract thadentification problem tractable, since instead of attempting
desired model functions from concentration measurementsto determine these functions as a whole, we only need to
that could, for example, have been obtained from computer-find four scalar real constants appearing in particular semi-
ized axial tomographic scanner (CATSCAN) measurements empiricial power-law type approaches for these functions.
(as in[22-25) or by light extinction profile$27]. In Section3 we provide the mathematical framework of
To outline the scope of this paper, we recall that the mathe- the parameter identification problem. The parameters of the
matical model describing the centrifugation process is given constitutive functions, which are collected in the common pa-
by a second-order degenerate parabolic partial differential rameter vector e, depend on the material properties of the sus-
equation (PDE), whose coefficients are determined by the pension considered. Our goalis to detern@nio this end, for
functionsfyk(¢) andoe(¢). In our case, these functions are any given parameter vecterwe denote by(e) the solution
unknown, and concentration measurements, so-called obseref the initial-boundary value problem describing the centrifu-
vations, either at fixed times or at fixed radial positions are gation process, and denote H) the functional measuring
available. We interpret these measurements as part of a soluthe error, that is, the distance to the observation. The solution
tion to the PDE, and seek to determine the coefficient func- property of¢ is expressed in the weak fornk(e, p; €) =0
tions in such a way that the error between the observationfor all test functiong”. We replace the unconstrained min-
and the solution of the PDE is minimized. Interpreting this imization problem “minimize7(¢(€))” by the minimization
error as a cost functional, we see that the task of parametemproblem “minimizeL(¢, p; €) := J(¢) — E(¢, p; €)", where
identification essentially is amptimization problem L is the Lagrangian of the constrained minimization prob-
The problem of calculating back the coefficients of a PDE lem “minimize J(¢) under the side conditioB(¢, p, €) =0".
from a given solution is usually referred to aparameter To solve this minimization problem, we need to determine
identification problemThe slightly more general mathemat- the test functiorp, which acts as a Lagrangian multiplier, in
ical area ofinverse problemalso includes, for example, the such a way thad£/3¢ =0 vanishes. This problem is called
reconstruction of initial conditions for a given solution. A the adjoint problem. Its solution permits to calculate the gra-
large number of authors proposed analytical and numericaldient of the cost functioy with respect tee. This gradient
methods for inverse problems in evolution partial differential leads to an improved choice ef The existence of solutions
equations, see for examlgs—-42]and the references cited for the inverse problem is a consequence of the continuous
in these papers. The basic difficulty is that inverse problems dependence of the entropy solutions on the flux and the diffu-
are highly ill-posed, which implies non-uniqueness in most sion for a degenerate parabolic equation (88¢34,44,45).
situations. In fact, different initial conditions or coefficient However, we cannot expect this solution to be unique.
functions may lead to the same solution, which means that The formal calculus of Sectid®icannot be performed ex-
the optimization problem is likely not to be uniquely solv- actly. To apply it to solve real-world problems, we need to
able due to several local minima of the cost functional. This transfer it to a discrete version, which is derived in Section
property requires that the final result of the parameter identifi- 4. One step in this procedure is the solution of the forward
cation procedure be verified and, for example, compared with or direct problem. For its discretization, we consider a finite
findings for similar materials with known parameters, before volume scheme in conservative form with an Engquist—-Osher
it can be accepted for further simulation, control, design and approximation for the numerical flyd7,43,46] The result
related scale-up calculations. is an optimization scheme for identification. (Some tech-
The governing equation of the centrifugation model is a nical details are deferred tAppendix A In Section5 we
non-linear second-order parabolic equation which degener-present some numerical examples of parameter identification
ates to first-order hyperbolic type, where the location of type for this problem. Finally, Sectiof collects conclusions and
change is unknown a priori and therefore, part of the solution some final remarks due in light of the analysis and numerical
of the problem. For gravity settling in a column, a similar results.
numerical parameter identification technique, was presented
recently by Coronel et aJ34].
The remainder of the paper is organized as follows. In 2. The centrifugation model
Section2, we adopt a spatially one-dimensional model for
centrifugation of flocculated suspensions that is described in  Fig. 1shows the two configurations considered: (a) a tube
detail in[43], and which is a special case of a spatially multi- and (b) a basket centrifuge, both rotating at a given angular
dimensional mathematical framework for these mixtures pro- velocity . To distinguish between these cases, we introduce
vided by[3]. This model appears in two variants for rotating a parametes taking the values =0 ando =1 in the former
tubes and basket centrifuges, respectively. In both cases, thand latter case, respectively. The unique spatial coordinate
resulting mathematical model is an initial-boundary value is the radiug, which varies between an inner radigs>0
problem for a strongly degenerate quasilinear parabolic par-and an outer radiuR> Ry, corresponding to the suspension
tial differential equation fogp = ¢(r, t). We emphasize that meniscus and the outer wall, respectively. It should be em-
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w ¢ = ¢ sideration. These functions account for hindered settling and
> 16=01 0<¢<de | 6> | sediment compressibility, respectively. For simplicity, we as-
sume thafyk(¢) is a continuous and piecewise differentiable
function satisfyingfpk(¢) =0 for ¢ <0 and¢ > ¢max, Where
dmaxis the maximum solids concentration, dggl¢) <O for
(@ R v 0<¢ <dmax The functionA(¢) is the primitive of the diffu-
sion coefficiena(¢),
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wherea(¢) is given by

_ fok(@)oe(¢)
Aogp

Here,Agis the solid—fluid density difference, aaf{¢) is the
derivative of effective solid stress functienr(¢). The func-

tion oe(¢) is assumed to vanish as long as the solid flocs are
in hindered settling and not in contact, which occurs wher-
Fig. 1. (a) Rotating tube with constant cross-sectier 0), (b) rotating everfp do.es not exceed a.crmcal concentretm and io be
axisymmetric cylinderq = 1). The concentration zones are the clear liquid a St”Ctly Increasing function af for ¢>dc, 1.€., we have

=0), the hindered settling zone (@< and the compression zone
(#=0) g (@< ¢c) P {zofm¢5%, %@{=Ofm¢5%,
O¢l

a(p):=

(b)

¢>de.
oe(®)
) ) ) ] >0 forg > ¢, >0 forg > ¢c.
phasized that the reduction to one space dimension repre-

sents a strong simplification that is acceptable under severalCombining the assumptions @k and onoe, we see that
restrictions only. In particular, the angular velocitynust be

large enough such that the centrifugal body force is dominant ;) = 0 forg < ¢candp = dmax

and the gravitational can be neglected, but on the other hand >0 forge < ¢ < Pmax

not so large that Coriolis effects would become important. ) ] ) ) _
Moreover, the effect of sedimentation onto the side walls of ~ Thus, (2.1) is a first-order hyperbolic partial differen-
tubular centrifuges (case=0) is neglected. The limitations ~ tial €quation for¢ < ¢c and ¢ > ¢max and a second-order

of such one-dimensional models, which were first introduced Parabolic partial differential equation fgg < ¢ < gmax. Since

by Anestis and Schneidgt0,11] (see alsd47]), are clearly the degeneracy to hyperpelic type takes place on an interval
discussed by Ungarigh8]. However, the alternative of pass- of solution values of positive lengtk2.1) is calledstrongly

ing to several space dimensions in the framework of the phe-degenerate parabolic _
nomenological model would mean that additional equations N this work, we limitourselves to two common parametric
for the motion of the mixture would have to be solved. we forms of the model functionfk andoe. We assume that
assume here the viewpoint that the conditions allowing for &ccording to Richardson and Zgkb], fuk is given by:

the above-mentioned simplification are satisfied. This view c

is supported by a series of recently published centrifugation f,(¢) { Uood(1— @)~ f0r0 < ¢ < dmax.

experiment§29,32], which exhibit good agreement with the 0 forg < Oandp > gmax.
predictions of one-dimensional models. Uno < 0. C>1 2.2)
The resulting strongly degenerate quasilinear parabolic o T T
partial differential equation is while the functionoe is defined by the power-law function
50]
o 19 [ o [
®i1l (_V1+Jfbk(¢)>
ot roor g 0 forg < ¢,
19 (,0A() O\ oo@rof —1) forg =g 7% KT
o . 00 c) — ore > ¢c,
_10 ( 8r> . (€ 0r=(Ro, R) x (0.7), 23)
(2.2)

We assume here that, is a known constant. Thus, if we
whereg is the acceleration of gravityyg the radius of the  utilize (2.2) and(2.3), the problem of determining suitable
inner suspension meniscus dRdhat of the outer wall. The ~ model functiondpk(¢) andoe(¢) from observations reduces
functionsfpk(¢) andA(¢) are the Kynch batch flux density  to that of identifying the parameter veces (C, ¢¢, 00, K) .
function and the integrated diffusion coefficient, respectively, = The complete model for the centrifugation of a suspension
which describe the rheology of the suspension under con-of aninitial concentratiopg = ¢o(r) is given by(2.1)together
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with the initial condition sured at a fixed radius To formalize the possible choice
5 of observations, we assume tlggt, ) is piecewise constant

¢(.0) = ¢o(r). re<[Ro. R], (2.4) on rectangles of siz&# x A7. Thus, the observation data is

where we assumgo(r) € [0, ¢max] for r €[Ro, R], and the ~ given on a structured gri@ with ~

kinematic boundary conditions Q:={r1,...,ry} x {r1,...,t5} C O1:=[Ro, R] x [0, T].

0?rp A (o) The aim is to determine the parameter veettor which the
( g Joi(¢) + 3r> (o, 1) =0, solution of the model problerg(r, t), approximates best the
observed dat&(r, ¢) (in a sense yet to be described). That
t>0, re{Ro, R}, (2.5) solution ¢ = ¢(€) depends on the chosen parameters since
which express that the flux througk Ry andr =Ris zero. the constitutive function$=f(e) andA=A(e) do. This uni-

Itis well known that solutions of the initial-boundary value  versal dependence of both the solution and the constitutive
problem(2.1), (2.4), (2.5)develop discontinuities due to both ~ functions on the parameters will be suppressed for notational
the non-linearity of the flux and the degenerate diffusion term, convenience.
and have to be characterized as weak solutions. To ensure The parameter identification problem can be written as
uniqueness, a selection criterion or entropy condition has to@ constrained optimization problem, where the constraint
be stated to select the physically relevant one among severalis given by the direct initial-boundary value problég1),
weak solutions. The precise statement of the solution con-(2.4), (2.5)in its appropriate weak formulation. Thus, the op-
cept, i.e., the sense in which we understamtisaontinuous ~ timization problem can be written as “minimiz&g¢) under
function to be solution to the initial-boundary value prob- the constrainty=¢(€)", where the ‘cost function7= J(¢)
lem, requires mathematical preliminaries that are beyond themeasures the quality of approximation. That cost function
scope of this contribution and is therefore omitted here; seedepends on the parameter vectomediated by the model
[33] for details. The proof of existence and uniqueness of an solution. A natural ChOiceA is the integrated Squared distance
entropy solution of the direct problem is outlinedir8]. between the observed datand the solutior = ¢(€) of the

Simulations of centrifugation processes obtained by nu- model function, which gives rise to the cost function
merical solution of the governing equati¢2 1) along with 1 - 2
(2.4) and (2.5) are presented in a series of previous papers j(¢(e)):=2/Q (@@ 1) = ¢(r. 1)) 8¢y (1) dr (3.1)
[13,33,43,51-53]and will not be repeated here. Exact solu- ! R
tions for the special case of anideal suspensionivitDare ~ whered;(n1) = 1 if (r1) € Q and s, (. 1) = O elsewhere.
determined by the method of characteristic$lif,11] (see Since first-order equations generally have discontinuous so-
also[47]). Finally, we mention that the modgd.1)—(2.5has lutions, the governing Eq2.1) as constraint o = ¢(€) is
recently been extended to polydisperse suspensions formingeplaced by its weak form
compressible sedimenis4]. :

For a sus i i i i e, E@ PO

pension forming a compressible sediment, i.e.,
wheneverA= 0, our model predicts the formation of two ___ // { op + A )ap + A( )3219
moving interfaces, the suspension—supernate interface mov- "~ J or ¢ ot /¢, r or ¢ or2
ing towards the outer radius, and the suspension-sediment R
interface, at which the concentration exceeds the critical con- + (¢, 1) p} dr dr + / opl o dr
centrationge, rising from the outer wall. The former is a Ro
curved shock that merges with the sediment-suspension in- T 3 R
terface after a finite time that is usually referred to as critical + / A(g) (p — Up)
time. Furthermore, the concentration of the suspension lo- 0 or
cated between these two interfaces is not constant (as in theyhere
gravity case), but decreases as a function of time. The system 2
usually quickly attains a steady-state sediment profile. F(b, )= — % Fok(e) — g A9),

dr =0, (3.2)

r=Ro

. . _ [@? A@@)
3. Mathematical formulation of the parameter s(¢, r)=¢ [fbk((ﬁ) + rz} ;
identification problem &
andpis atest function. Summarizing, we have formulated the
3.1. The inverse problem as an optimization problem parameter identification problem, where a parametrization of
with PDE constraint the model equations for a given observation is sought, as an
optimization problem, where the deviation of the model solu-
The observation data are callg(t, r), and may consistof  tion (which has to satisfy the model equations as constraint)
concentration profiles as a functionrgfeach corresponding from the observations is minimized with respect to the set of
to one or several fixed times or of concentrations mea-  all parameters.
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3.2. Lagrangian formulation 3.3. Adjoint state

In classical optimization, it is a common technique to re- The adjoint state is given by the requiremédits). The
formulate the optimization problem by adding (or subtract- conditions on the test functiom are obtained after the fol-
ing) the constraint to the cost function. Thus, we consider lowing straightforward derivation of the derivative 6taken
the following Lagrangian for the problem “minimiz&¢(e)) in the direction of¢:
with respect t&”

L
L(¢. p€):=T(¢) — E(¢, p; ). (3.3)

_ [T _9E@.pi9)
The test functiorp appears here as a generalized Lagrange e - 3¢ - 0¢
multiplier related to the constraing =¢(€). Furthermore,
sinceE(¢(€), p; €) =0, we have that = / / 8p(r, (@ (r, 1) — B(r, )85 (r, 1) e dr

J Or
L(¢(€), p:€) = T(¢(€)).
[ s (L +sson?

In the current application, the cost function is not or 4
parametrized by the parameters but only depends on the pa- 9p R
rameters via the solution of the constraining partial differen- +a(¢)7 7 +05(9. V)P) dr dr—/R 8¢(r. T)p(r, T) dr
tial equation. Therefore, the cost function cannot simply be °
differentiated with respect to the parameters. However, opti- T op P\ |® d
mization algorithms for non-linear equations (as the conju- Jr/ 8¢a(9) <3r N Or) r—Ro .

gate gradient or the Newton method) rely on the total deriva- . ] .
tive of the cost function, which can here be rewritten and The test functiorp has to be determined in such a way that
specified with the help of the Lagrangian formulation as this quantity vanishes, which leads to the adjoint equation

. . op op o°p
d7(#(e)  dL(¢(e). p;e) | dE(¢(e), p;€) o T f(d. 1)~ +ald)-=5
= + ot or or
de de de .

_ [3£0E. ri®) W)\  ILGE). pi® = ~(0= 8l 1) = dysle. r)p (36)

N ¢ T de de ’ for (r, t) € Q, which is a conservation equation for the un-
(3.4) known functionp that arises as a backward problem with the

end and boundary conditions

where de/de vanishes since(e) is considered to remain on

the manifold of solutions to the weak formulation, This for- 2+ 7) =0 for re[Ro. K], (3.7)

mal calculation of the total derivative of the cost function ap P

splits the problem of finding the total derivative of the cost <8 — a> (rp, 1) =0 for t < T, rpe{Ro, R}. (3.8)
/4 b

function up into two parts, corresponding to the two terms in
the last sum. The adjoint problem is ill-posed since its solution is not

unique: different initial settings could lead to the same pre-
(1) The gradiente¢(€) (and therefore, ¢l(€)/de) cannot be scribed end state.

calculated, since the solutigife) is not an explicit func-
tion of the parameters. This problem can be circumvented 3.4. Gradient of cost function
if we require that

Under the condition that the test functiprsatisfies the
% -0, (3.5) fadjoint equat.ions and noting that the cost functt«f(ld)(g))
00 is not a function of the parameter vectfthus the gradient

] o ] ) VeJ(¢(€)) vanishes), the total derivative of the cost function
which leads to adjoint equations that restrict the test ;g given by

functionp. That idea has been introduced and exploited 5
in previous works by James, Sepulveda and co-workers dJ(¢(€)) _ // (df(¢>, r) dp + dA(g. r) 9°p
de Oor

[38,39,55,56] de or de or2

(2) Now, given a test function which lets the term ds(e, )
dL/3¢-dg(e)/devanish, the calculation of the total deriva- + de’ p) d dr, (3.9
tive of the cost function reduces to the calculation of the

gradient of the Lagrangian with respect to the parameter which can be used to employ any gradient algorithm in order
vector. to minimize the cost function.
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4. Optimization scheme for identification
4.1.1. Discretization of the direct problem

We introduce a standard rectangular grid Qs by
choosingJ, N € N and settingAr := (R— Rp)/J, At:=TIN,
ri :==Rg+jAr andt, :=nAt. The numerical scheme for the
solution of the direct problem is written in conservative
form as a marching formula for the interior points (“interior
scheme”).

¢7+l = ¢} — A j(Fiiq0(8) —

—Aj_106), j=1...,

where X ; = ,uj:zAt/(r;.’Ar), supplemented by the initial
condition

¢ — ¢Il’llt
J

and the following discrete versions of the boundary condi-
tions(2.5).

MoF”y5(€) —

Fi_1/2(8)) + wj(Af11/2(6)
J—1, 4.1)

j=0,...,J 4.2)

poA”y5(€) =0 (4.3)

A Fj (€)= (4.4)

Inserting (4.3) and (4.4) into the formula for the interior
scheme(4.1), we obtain update formulae for the boundary
solution valuegg andg’;, respectively (“boundary scheme”).
The numerical flux

wiAyy1/2(€) =0

n n n n
Fii1p=Fii1p@i ki1 - ik rjv1/2)

and the numerical diffusion term

n _ gn no_ no_ ..
A1y = A1) _g 10 Vi Tiay2)

are specified i\ppendix A
The discrete versions of the unknowrand the test func-
tion p are denoted by, andpa, and¢; and p’; are the

constant values opa andpa at (Ar, nAt), (j,n)e On,
respectively, wher@,:=(0,...,J —-1)x (,..., N —1).

The calculus for the discrete formulation is analogous to the
formal continuous one and thus will also be presented in an
analogous structuring, whereas the formal calculus has fo-
cused on the formal motivation, the discrete calculus is fo-

cused on an efficient scheme as result.

4.2. Discrete optimization with PDE as constraint

The discrete minimization problem is stated as “minimize
Ja(oa(€)) with respect tae”, where

MY @e-#

(jin) € Oa

Ia(@a(€):=

(4.5)

S. Berres et al. / Chemical Engineering Journal 111 (2005) 91-103

For a given parameter vectey we express the fact that
¢ is a solution of the discrete direct problgm1)—(4.4)by
writing
Ex(#a(€). pa;€) =0 (4.6)

which is the constraint to the optimization problem, and
whereE(.,-;-) is defined by

S -t
(jin) € 0a

+F}y1 @00

Ex(pa. pa€) =

J+1P]+1)

A’}+1/2(e)(/ljpr} M/+1Pj+1l)}

+ Z(¢J ry -

This expression is derived by multiplying the scheme for the
direct problem(4.1)—(4.4) with p;?“, followed by summa-
tion overj andn such that in the final form, the sums are
taken over differences of the test function. This imitates the
continuous weak form, as is detailed in Appendix[88].
The constrain{4.6) holds for all discrete test functions, .

$7p9). (4.7)

4.3. Discrete Lagrangian formulation

The discrete Lagrangian formulation

1
LA (A, PA;9)1=A ArJA(fﬁA) — Exn(9a, pas€) (4.8)

is again used to allow an explicit expression for the total
derivative of the cost function

dJa(oa) dLa(éA, Pa;€) n
de de

0LA(PA, PAE) d¢>
P " de

dCa(oa, pa;€)
de ’

dEA(éa,
de

=AtAr[

:AtAr<

+ At Ar

PA;e)}

which again splits the problem up into two parts: If firstly,
the adjoint equation prescribes the test funcparsuch that
9L/3¢ A =0 and the corresponding term vanishes, then, sec-
ondly, the gradient with respect to the parameters of the La-
grangian gives a descent direction of the parameter vector for
the algorithm.

4.4. Discrete adjoint state

is the discrete cost function. Here, we assume that the iden-

tification points inQ are actually grid points an@ C Oa
is the index set associated wigh

The identity
I _ 9Ta(@a) _ IEA(PA, Pa’€) (4.9)
3’ 0" o’ '
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leads to the following adjoint scheme for the discrete test determine an improved parameter VGCE&F 1) proceed as

function Pl

K-1
oF" (e)
JHk+1/2
Py o=pitt- Tr/()\j+kp}}i%_)\j+k+ll’?ikl+1)
k=—K J
K-1
OAT ¢11/2(8)
+ oy 845”/ (e P 0 = mireraPir )
t=—K
—(¢(e) — 3)7)5@(]1 n)
for j=0,1,...,J andn=N-1N-2,...,0
(4.10)
with the end condition
pY =0 for 0< j < maxKk, K}
and J —maxK,K}+1<j<J (4.11)

and we consider the conventional notation

Fii1p = A1 =0 for £,k <1 andl, k> J

4.5. Discrete gradient of cost function

The discrete gradient of the cost function

Vea(€) = Ar AtVeLa(da(€), pa;€)

= —Ar AtVeEA(ch(e), PA, e) (412)
where
VeEpn = Z VeF;lJrl/z(e)()LjP’}Jrl )LJP;Hrl)

(jn)eQa

— VeA 1@ P} + nisaptfl)  (4.13)

finally gives the steepest descent direction.

follows:

(1) Solvethedirectproblem numerically using the numerical
schemé4.1)—(4.4)or one of its implicit or semi-implicit
variants), and using the parameter veatore®. This
yields a discrete solutiogin =¢a(€).

(2) Use the solution A (€) to solve the discrete adjoint prob-
lem defined by the adjoint scherfle 10)and the corre-
sponding end conditio(¥.11)when the solution to the
direct problem (in Step 1) has been calculated by an ex-
plicit scheme. If an implicit scheme has been used in Step
1, then also an implicit version of the adjoint scheme has
to be used. An example of a suitable implicit adjoint
scheme is given in Sectidh The result of Step 2 is a
specific discrete test functiqn .

(3) Use an explicit formula for the discrete gradient of
the cost function, for example the one given (dy12)
(4.13)when Steps 1 and 2 have been handled by explicit
schemes, to calculate a discrete gradienf (e) of the
cost function.

(4) Use the discrete gradiertz 7a(€) to find an improved
parameter vectag* 1) for example by a conjugate gra-
dient method.

(5) If e* Disaparameter vector of sufficient quality (for ex-
ample, wherjek* 1 — &l is small enough), then stop;
otherwise, increadeby one and start again with Step 1.

5. Numerical examples

The numerical examples refer to the batch centrifugation
of a suspension whose initial concentration is chosen homo-
geneously ago=0.07 on the domaine [Ry, R|=[0.06 m,

0.3 m]; the flux function is chosen in accordance WRtR),
whereus, =0.0001 m/sC =5 andpmax=0.66, and the angu-
lar velocity u is such thaRw? = 10,000 g. Additionally, we
consider the power law functigi2.3) with o9 =5.7 Pak=9

Note that the calculus performed up to now is indepen- andg. = 0.1 for the effective solid stress; and finally, the den-
dent of the numerical flux function. Now, it only remains sity Ap = 1660 kg/nf and the usual gravitational acceleration
to specify how the derivatives of the numerical flux (as de- g=9.81m/é.
sired in(A.2)) are obtained, i.e. “explicit” expressions for the In these numerical examples, we consider two kinds of
gradientsVeF 12 andVeA” 12 and, more important, for  observation data: a profile of concentration=af as a func-
the partial derivatives F kr1/2/ 00 fork=—K, .., K-1 tion of r, and a solution profile at the fixed positiorF R
a”daAn+e+1/2/3¢ for ¢ — —K,...,K—1 need to be de- as a function of time. These observations are generated by
rived. These quantities are requwed in the adjoint schemea numerical simulation of the direct problem with the ex-
(4.10) Explicit expressions for these derivatives are provided plicit second-order Engquist—Osher scheme and with the dis-

in Appendix A cretization parameters= 200 andN such that the following
CFL condition (cf.[43]) holds:
4.6. The parameter identification algorithm Rav? At
— |fbk(¢)|* +2 max a($),—s <(&.1)
g oe [o ¢max] pe0dmad  (Ar)?

The discrete calculus can be summarized to give the fol-
lowing parameter identification algorithm. We assume that The stability requirement imposed If$.1) to the explicit
observation data are given on part of a grid with mesh scheme implies that we need extremely small values of
width (At, AX), and we assume that a start parameter vec- At(~(Ax)?), which considerably increases computational
tor e=e is given k=0 when the algorithm is started). To time. This disadvantage is removed by considering a fully
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implicit scheme which is unconditionally stable. Thus, for with entries

the identification results presented we consider the following
first-order implicit discretization of3.9):.

¢t =4
1

+ (AL
Fn+l (e)

“1j2
1 Fj12(8) —

— Mj(FI5(6) = FIT15(8)
2(6) — AT (@),
NOAn 1/2(e) =0

2(&)=0

init
= qu s

¢;

1
AL (5.2)
For eachn=0, ..., N—1, we have in(5.2) a non-linear
system of size) x J, which is solved using the method of
Newton—Raphson.

In all tests we consideN=J. The weak formulation

Ea =Ea(¢a(€), pa; €) is given by

En = Z {¢n(pj n+1)
(jin) € Oa
+ Fiiao(p} — jrapiia)
,'+1/2(Mjp,' - M,i+1pj+1)}

+Z{(¢] + 0 (Fliayp = Fi1p0) = (Al )

j=0
N 70
—AY Pl - [45 + 1(F2 12— Fi_1y2)
— (A% 10 — AT 121 P9). (5.3)

The adjoint scheme and the gradients which are given below
are obtained with the methodology developed in Secfion
(including theAppendix A).

We use the conjugate gradient method in the modified
form of Polak and Riliére to minimize the objective function
J(#(e)), starting with the initial vector
e=(5.5,6.5,9.5,0.08) (5.9
In order to solve the linear minimization step with the con-
jugate gradient algorithm we employ Wolfe’s linear search
algorithm as described [i57].

5.1. Example 1: Profile of concentration att=T as
observation

In this example we consider a rotating tulee=0) and
radial profiles at fixed timeg(r, T) with Te {0.3s, 1.2} as
observation data, such that the cost function is given by

(5.5)

1 (R -
9= [, 6en e

Let P":=(pg, ..., P}), and denote, for the implicit calcula-
tion of the adjoint scheme, by, theJ x Jtridiagonal matrix

; L BF;’fl 2 8.A;’-71/2 ) y
aj,j*l —_— ‘]71 n ‘]71 n 3 g oo ey Jy
3] 9]
BF BF
anjzl—‘r)”./' < a+nl/2 ) ;/2)
¢J ¢j
o A 1172 _ OA] _1/2 — -1
l’l’] n n £ ,] - 9 r e ey $]
¢’} ¢’}
BF” ‘1 oA"
) +1/2 ) Jj+1/2
n]+l —Ajt1 3¢7 + U1 8¢;, ,
F} )5 9A7 5
i=1...,J—1, no=1+4r—2L2 /
Jj ag,o + Ao 3¢8 0 8¢8
12, OF) 1/ 0AY 1172
Y o’ ¢’

Then P" is the solution of the linear implicit adjoint
schemeA, P”—P”+1 for n=N-1,
condition p
The grad|ent of the discrete cost function is given by

0 with the end

= (¢} - ¢>N)/aN/. for Je{O 1, ..., J.

VeJa(€)=—ArVeEa(¢a(epa;e)) where the gradient of the

discrete weak form with respect to the parameters is evaluated

from

VeEA = Z {V9F7+1/2()\/P7 — )\.H'lp;l'-i-l)
(j:n) € Oa
= VeAj 1/0(1;Pj = 1jv1P}0)}

+ Z{[A (VeFfi1/2 = VeF 1))

VeA)_11p}

VeAd 1))

— 1j(VeA], j+1/2 ~
—[Aj(VeA% 10 —

— 11j(VeA%y1/n — VeAD 1 )% (5.6)

The identified parameters are shownTable 1and the pro-

files for the two different observation times are presented in
Fig. 2 These figures present the results with several step sizes
of resolution and thus show the convergence of the numerical
identification scheme when the accuracy increases.

Table 1
Example 1: the identified parameters for the observation profilésat3,
1.2

J T c o0 k e
100 03 5500066  6.499970  9.499746  0.109268
12 5500434  6.499983  9.499801  0.110288
150 0.3 5499963  6.499959 9499700  0.108991
12 5500173  6.499975  9.499766  0.109467
200 03 5500081  6.499966  9.499729  0.108849
12 5500364  6.499981  9.499813  0.109645
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Fig. 2. Example 1: comparison of the observed and identified profilés at3 (left) andT = 1.2 (right).

In this case, the adjoint scheme is givenAyP"=P™1+¢
forn=N-—1,..., 0with the end conditiomr;v =0, and where

H . . —- T: .
In the second example, we consider a cylindrical cen- the column vectoc=(cy, ..., C3)" is given by

trifuge (o0 =1) and assume that a profggR, r) with t < [0,

¢t — " if Re[rj_1/2.7j11/2).

1.2] andR=0.286 m is observed, that is, concentrations are ¢j = 0 otherwise =1....J

measured at a fixed (radial) location as a function of time. ) ]

This leads to the cost function he gradient 1S calculated from
VeJa(€) = AtVeEada (e, pa; €), where VcE is given
by (5.6).

T — N —
70 =3 | 6D~k a

The numerically identified parameters, starting fri@m),

(5.7) are shown irTable 2and the profiles are given kFig. 3.
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Fig. 3. Example 2: comparison of the observed and identified profiles at the bourdary0.3 with temporal resolutiont=0.012.
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Table 2 A tion with respect to each of the parameters involved, which
Example 2: the identified parameters for the observation prefié&R=0.3 remains to be done in future work.

J C 0o k oc

100 5.500140 6.499936 9.499538 0.109727

200 5.500043 6.499962 9.499705 0.110450  Acknowledgments
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one of the fundamental problems in particle technology and,
in particular, solid-liquid separation, namely the identifica-
tion of rheological model functions. The parameter identifi- Appendix A. Derivatives of numerical fluxes
cation framework outlined herein is flexible enough to handle
both tube and basket centrifuges (as well as gravity settling  The numerical schemé4.1) is based on the non-
systems, which are treated [B4]) in conjunction with: (a)  conservative fornf2.1) of the governing equation. Thus, the
radial concentration profiles measured at a discrete numbemumerical fluxesF” approximate the physical flue,

. . . Jj+1/2
of times, (b) temporal concentration profiles measured at ar) = — ¥ (0)lg, and A1, is an approximation of

fixed radial position, and (c) full measurements of concentra- 5 ._ r3.A(o). Here, we consider the forward finite differ-
tions as functions of position and time, where the positions gnce approximation af, A, which gives

and times assume values from whole intervals. Measurements

leading to data of type (c) are at present technically uncon- . A(¢7+1) - A(d’?) 5

ceivable for rotating systems, but can be obtained easily for Ajr1/2= Ar T2 (A1)
gravity settling in resting columri84]. It should be pointed
out, however, that accurate concentration measurements o
type (a) for rotating tubes and using light extinction are re-
ported in[27,29,32] while type (b) measurements of con-
centration at a fixed radial position in a basket-type plate-like _ u

centrifuge by the method of suctioning probes are reported in © (u, v, r):=£(0,7) +/0 max(d; f(s. r), 0} ds

[58]. Although, the latter method probably requires a larger v

total time interval (that is, a low-to-moderate angular veloc- +/ min{d, f (s, r), O} ds. (A.2)
ity), these references illustrate that it is realistic to assume 0

that_ the measured data used in Examples 1 and 2 are indeeth the present application, where the dependence of the nu-
aval!able. ' merical flux on the positionis of multiplicative type, and the
F|na”y, we should comment on the qua“ty of the param- functionf(,' r) has on'y one Sing'e maximum, denot_&dJ the

eter identification in these examples, which more precisely integrals in this definition can be easily evaluated, and leads
present problems of parameter recognition. One would ex-tg the explicit formula

pect that the scheme accurately reproduces the parameters

ﬁ/e employ the numerical flux function corresponding to the
ngquist—Osher generalized upwind schdii&43,46]de-
fined by

that have actually been used for the simulation. However, we flu,r) foru < wum,v <um,
observe infables 1 and 2hat the identification moves away flu,r)

very little from the initial guess values @, o9 andk speci- +f(,r)

fied by (5.4), while there are considerable changes inghe ~ FEO(u, v, r) = ' (A.3)
component, namely from 0.08 to values around 0.11, where —flum,r) foru < um, v > um,

as the value that is actually used is 0.10. It is however, wrong flum,r)  foru >um,v < um,

to presume that the method is flawed, sitégs. 2 and 3 f(v,r) foru > um, v > um,

clearly illustrate that the profiles calculated using the param-

eters identified by our numerical method approximate well Whichis used for the evaluation &f;, , ,, be specified below
the observed data. Rather, these examples seem to alert to tH8 (A.5).

ill-posedness of the problem, which means that the solution ~ We now deal with the differentiation with respect to the
to the identification problem in general fails to be unique, and Parameters. Inview ¢fA.2) and(A.3), the problem of calcu-
therefore the method may converge to a solution that is not lating the gradient of the numerical fluX;, , , with respect

the intend one. Moreover' it appears that the solution proﬁ'es tothe pal’ametel’s is shifted to the calculation of the gradient of
of the direct problem depend very critically on the choice of the fluxf.In addition, from(A.1) the calculation o¥Ve A7, ; »

¢, and to a lesser degree on the other parameters. This leads given in terms oNeA. In our application, the terms intro-

to the problem of determining theensitivitiesof the solu- ducing the dependence odo not depend on the parameters,
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i.e. we do not deal with shape optimization. Th¥gF", ; , which select the active slope such that

is calculated in terms oVe f(¢, r) = r*+° Ve fok(¢), where

T — MM(s7, 9, sT) = x7s7 + x0T + xTsT.
for(p) = —0?for(®)/g andVeA’, , , is calculated in terms of (57850 57) = 1587 F 2585 + %785

Ve by In terms of the reconstructions of the solution at the cell
boundaries
1/2
Vel i L2 T (VeA(#]1.1) — (VeA(®))): Ar Ar
Y a / ofi=0) + 5s). dhi=d - oo, (A.4)

To provide expressions for the derivatives with respect to
the unknown, we note thaf =1 in (A.1), which implies the
following local derivatives ofd’ 4 ,:

the numerical flux for the second-order scheme uséd.i)
is based on the evaluation

F' oy o = FEO@R, ¢b q, rjva)2). (A.5)
0Af e A i RS
3¢r} - Ar From(A.4), we see that in this casié,= 2. An application of
the chain rule shows that the local derivatives of the second
and order numerical flux are given by
012 _ _a(¢"}+1)r?+1/2. OF) 1y OF}iqyp 907
i1 Ar 9974 ¢R gty

The local derivatives of the numerical fluxes with respectto Fn 9F" 3¢ 9F" gt
the solutlonqb" are, for the first-order scheme wmjﬁrl/z = +1/2 i+1/2 i+1/z it

_ T T T aoR ad" | 3 FYVEN
FEO(¢;?: ¢ty 1. 7" 1/2) (e, K=1) and as a consequence of ¢f o7 ¢J+l ¢j|_
(A.2), given by OF 10 OF 1 0% OFF 007,
., R9 L, odgty’
OF 12 max Af (9], rjv1/2) 0 P 0py iy b5y 9851
g 3¢’} T OF 10 OF, g0 0054
W, gk, 99"
0Fj11/2 _ min 3f(¢7+1, rj+1/2) 0 ¢/+2 ¢’]+1 ¢J+2
W, R where
R ...
Onthe basis of the numerical flux, a second-order scheme canaf;l/2 — max M 0
be constructed with a linear reconstruction of the unknown 967 ¢
by the slopes and
n n n no_ gn
7 — MM 945 — ¢ 1 i1 — b1 g2t of IF 1/ 3f(¢JL.+1, riviy2)
J Ar 2ar T Ar ) 5 =maxy — ———0p.
¢j+1 ¢j+l

where the standard minmod function and where the derivatives ¢f andg';, ; are evaluated from

min{a, b,c¢} ifa,b,c >0,

R n R n
MM(a, b, ¢):={ maxa, b, ¢} ifa,b,c<O0, 0pj _ Ar s 0; _ 1, ArSs
n n ’ n n’
0 otherwise 01 2 9 o] 2 3¢
R L
is used to ensure the TVD property. In order to facilitate the 3; _Ar 0sj 39; — Ar ds}
latter calculus, we introduce the local slopes 8¢j+1 2 a¢]+l’ 394 2 3¢5 4’
B o o Wwh_ L arag o
VTR YT A A R T v
n
st—gdtl 7J J+1 — % which are a consequence @.4). The slope derivatives are
Eh Ar in turn given by
and the indicator functions os" 0 1, as" ¢( .
. ==X A Xjs =——W; —X;
1 ifss =maxs;, s?, s}f} > 0or 3¢?_1 Ar”l o 2Ar™ a9 Ar J J
o — minfe— O ot
Xj= s;=min{s;,s;, 57} <0, as'; _ 1 0 i)ﬁ
0 otherwise ot 26r"T T Ar I
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