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Abstract

This paper presents a new mathematical technique for the identification of two rheological model functions (namely, the hindered settling
and effective solid stress functions) obtained from concentration profiles measured during the centrifugation of flocculated suspensions. We
consider both a rotating tube and a basket centrifuge at a given angular velocity, and assume that the radius (i.e., the distance to the center of
rotation) is the only spatial coordinate. The governing equation is a non-standard strongly degenerate parabolic partial differential equation for
the solids volume fraction as a function of radius and time whose coefficients involve the model functions. We present a numerical technique
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or the parameter identification problem suitable for this type of equations, and apply it to determine the model functions in two n
xamples.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Solid–liquid separation or dewatering processes of floc-
ulated suspensions, including the unit operations of thick-
ning, clarification, centrifugation and filtration, can be mod-
led by a recent theory of sedimentation-consolidation pro-
esses developed in[1–3]. This theory is equivalent to the
heory of suspension dewatering utilized in[4–7] (see also
he references cited in these works). Whenever the process
onsidered admits a spatially one-dimensional description,
he sedimentation-consolidation model reduces to a second-
rder parabolic scalar partial differential equation for the lo-
al solids volume fractionφ as a function of the spatial coor-
inate and time. The coefficients of this governing equation

nvolve two material specific model functions characterizing
he suspension under study, the hindered settling or Kynch
atch flux density functionfbk(φ) and the effective solid stress

unctionσe(φ). A particular feature of the governing equation
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lies in the absence of effective solid stress whenever the
ticles are in hindered settling, that is, whenever their vol
fractionφ does not exceed a critical concentration or gel p
φc. In this case, the sedimentation-consolidation equatio
generates into the first-order conservation law of Kyn
well-known kinematic sedimentation theory[8,9], which was
extended to the centrifugation of suspensions in[10,11]. The
unusual type-change feature of the governing partial d
ential equation made a deep mathematical analysis o
generate parabolic equations necessary (see, for exa
[12–15]). The benefits of this research for the enginee
community are reliable numerical methods for the sim
tion of solid-liquid separation processes[16,17]. Numerous
comparisons with experimental data[18,19] confirmed tha
the sedimentation-consolidation model indeed is a usefu
for the simulation, control and design of solid–liquid sep
tion processes[20,21].

In spite of all these advances, one mandatory prereq
for the application of the sedimentation-consolidation
ory, namely the necessity to determine the functionsfbk(φ)
andσe(φ) by experimentation, has persisted. Recent rep
of experimental techniques aiming at determining thes
uerger@mathematik.uni-stuttgart.de (R. Bürger), acoronel@roble.fdo-

ay.ubiobio.cl (A. Coronel), mauricio@ing-mat.udec.cl (M. Sepúlveda). equivalent material specific model functions by settling, fil-
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tration, and centrifugation include[22–32,5,7], respectively.
The present paper, as our previous studies[33,34], presents an
accurate and automatic mathematical technique to extract the
desired model functions from concentration measurements
that could, for example, have been obtained from computer-
ized axial tomographic scanner (CATSCAN) measurements
(as in[22–25]) or by light extinction profiles[27].

To outline the scope of this paper, we recall that the mathe-
matical model describing the centrifugation process is given
by a second-order degenerate parabolic partial differential
equation (PDE), whose coefficients are determined by the
functionsfbk(φ) andσe(φ). In our case, these functions are
unknown, and concentration measurements, so-called obser-
vations, either at fixed times or at fixed radial positions are
available. We interpret these measurements as part of a solu-
tion to the PDE, and seek to determine the coefficient func-
tions in such a way that the error between the observation
and the solution of the PDE is minimized. Interpreting this
error as a cost functional, we see that the task of parameter
identification essentially is anoptimization problem.

The problem of calculating back the coefficients of a PDE
from a given solution is usually referred to as aparameter
identification problem. The slightly more general mathemat-
ical area ofinverse problemsalso includes, for example, the
reconstruction of initial conditions for a given solution. A
large number of authors proposed analytical and numerical
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the discussion is limited to two particular parametric forms
of the functionsfbk(φ) andσe(φ). This makes the parameter
identification problem tractable, since instead of attempting
to determine these functions as a whole, we only need to
find four scalar real constants appearing in particular semi-
empiricial power-law type approaches for these functions.

In Section3 we provide the mathematical framework of
the parameter identification problem. The parameters of the
constitutive functions, which are collected in the common pa-
rameter vector e, depend on the material properties of the sus-
pension considered. Our goal is to determinee. To this end, for
any given parameter vectore, we denote byφ(e) the solution
of the initial-boundary value problem describing the centrifu-
gation process, and denote byJ(φ) the functional measuring
the error, that is, the distance to the observation. The solution
property ofφ is expressed in the weak form “E(φ, p; e) = 0
for all test functionsp”. We replace the unconstrained min-
imization problem “minimizeJ(φ(e))” by the minimization
problem “minimizeL(φ, p; e) :=J(φ) −E(φ, p; e)”, where
L is the Lagrangian of the constrained minimization prob-
lem “minimizeJ(φ) under the side conditionE(φ, p, e) = 0”.
To solve this minimization problem, we need to determine
the test functionp, which acts as a Lagrangian multiplier, in
such a way that∂L/∂φ = 0 vanishes. This problem is called
the adjoint problem. Its solution permits to calculate the gra-
dient of the cost functionJ with respect toe. This gradient
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ethods for inverse problems in evolution partial differen
quations, see for example[35–42]and the references cit

n these papers. The basic difficulty is that inverse prob
re highly ill-posed, which implies non-uniqueness in m
ituations. In fact, different initial conditions or coefficie
unctions may lead to the same solution, which means
he optimization problem is likely not to be uniquely so
ble due to several local minima of the cost functional.
roperty requires that the final result of the parameter ide
ation procedure be verified and, for example, compared
ndings for similar materials with known parameters, be
t can be accepted for further simulation, control, design
elated scale-up calculations.

The governing equation of the centrifugation model
on-linear second-order parabolic equation which deg
tes to first-order hyperbolic type, where the location of
hange is unknown a priori and therefore, part of the solu
f the problem. For gravity settling in a column, a sim
umerical parameter identification technique, was prese
ecently by Coronel et al.[34].

The remainder of the paper is organized as follows
ection2, we adopt a spatially one-dimensional model
entrifugation of flocculated suspensions that is describ
etail in[43], and which is a special case of a spatially mu
imensional mathematical framework for these mixtures
ided by[3]. This model appears in two variants for rotat
ubes and basket centrifuges, respectively. In both case
esulting mathematical model is an initial-boundary va
roblem for a strongly degenerate quasilinear parabolic

ial differential equation forφ =φ(r, t). We emphasize th
eads to an improved choice ofe. The existence of solution
or the inverse problem is a consequence of the contin
ependence of the entropy solutions on the flux and the d
ion for a degenerate parabolic equation (see[33,34,44,45]).
owever, we cannot expect this solution to be unique.
The formal calculus of Section3 cannot be performed e

ctly. To apply it to solve real-world problems, we nee
ransfer it to a discrete version, which is derived in Sec
. One step in this procedure is the solution of the forw
r direct problem. For its discretization, we consider a fi
olume scheme in conservative form with an Engquist–O
pproximation for the numerical flux[17,43,46]. The resul

s an optimization scheme for identification. (Some te
ical details are deferred toAppendix A) In Section5 we
resent some numerical examples of parameter identific

or this problem. Finally, Section6 collects conclusions an
ome final remarks due in light of the analysis and nume
esults.

. The centrifugation model

Fig. 1shows the two configurations considered: (a) a
nd (b) a basket centrifuge, both rotating at a given an
elocityω. To distinguish between these cases, we intro
parameterσ taking the valuesσ = 0 andσ = 1 in the forme
nd latter case, respectively. The unique spatial coord

s the radiusr, which varies between an inner radiusR0 > 0
nd an outer radiusR>R0, corresponding to the suspens
eniscus and the outer wall, respectively. It should be
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Fig. 1. (a) Rotating tube with constant cross-section (σ = 0), (b) rotating
axisymmetric cylinder (σ = 1). The concentration zones are the clear liquid
(φ = 0), the hindered settling zone (0 <φ≤φc) and the compression zone
φ >φc.

phasized that the reduction to one space dimension repre-
sents a strong simplification that is acceptable under several
restrictions only. In particular, the angular velocityω must be
large enough such that the centrifugal body force is dominant
and the gravitational can be neglected, but on the other hand
not so large that Coriolis effects would become important.
Moreover, the effect of sedimentation onto the side walls of
tubular centrifuges (caseσ = 0) is neglected. The limitations
of such one-dimensional models, which were first introduced
by Anestis and Schneider[10,11](see also[47]), are clearly
discussed by Ungarish[48]. However, the alternative of pass-
ing to several space dimensions in the framework of the phe-
nomenological model would mean that additional equations
for the motion of the mixture would have to be solved. We
assume here the viewpoint that the conditions allowing for
the above-mentioned simplification are satisfied. This view
is supported by a series of recently published centrifugation
experiments[29,32], which exhibit good agreement with the
predictions of one-dimensional models.

The resulting strongly degenerate quasilinear parabolic
partial differential equation is

∂φ

∂t
+ 1

rσ

∂

∂r

(
−ω2

g
r1+σfbk(φ)

)

= 1 ∂
(
rσ
∂A(φ)

)
, (r, t) ∈QT :=(R0, R) × (0, T ),

w e
i e
f ity
f ely,
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sideration. These functions account for hindered settling and
sediment compressibility, respectively. For simplicity, we as-
sume thatfbk(φ) is a continuous and piecewise differentiable
function satisfyingfbk(φ) = 0 for φ≤ 0 andφ≥φmax, where
φmax is the maximum solids concentration, andfbk(φ) < 0 for
0 <φ <φmax. The functionA(φ) is the primitive of the diffu-
sion coefficienta(φ),

A(φ) =
∫ φ

0
a(s) ds,

wherea(φ) is given by

a(φ):= − fbk(φ)σ′
e(φ)

��gφ
.

Here,�� is the solid–fluid density difference, andσ′
e(φ) is the

derivative of effective solid stress functionσe(φ). The func-
tion σe(φ) is assumed to vanish as long as the solid flocs are
in hindered settling and not in contact, which occurs wher-
everφ does not exceed a critical concentrationφc, and to be
a strictly increasing function ofφ for φ >φc, i.e., we have

σe(φ)

{
= 0 forφ ≤ φc,

> 0 forφ > φc,
σ′

e(φ)

{
= 0 forφ ≤ φc,

> 0 forφ > φc.

Combining the assumptions onfbk and onσe, we see that
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(2.1)

hereg is the acceleration of gravity,R0 the radius of th
nner suspension meniscus andR that of the outer wall. Th
unctionsfbk(φ) andA(φ) are the Kynch batch flux dens
unction and the integrated diffusion coefficient, respectiv
hich describe the rheology of the suspension under
(φ)

{
= 0 forφ ≤ φc andφ ≥ φmax,

> 0 forφc < φ < φmax.

Thus, (2.1) is a first-order hyperbolic partial differe
ial equation forφ≤φc and φ≥φmax and a second-ord
arabolic partial differential equation forφc <φ <φmax. Since

he degeneracy to hyperbolic type takes place on an int
f solution values of positive length,(2.1) is calledstrongly
egenerate parabolic.

In this work, we limit ourselves to two common parame
orms of the model functionsfbk and σe. We assume th
ccording to Richardson and Zaki[49], fbk is given by:

fbk(φ)

{
u∞φ(1 − φ)C for 0 < φ < φmax,

0 forφ ≤ 0 andφ ≥ φmax,

u∞ < 0, C ≥ 1, (2.2)

hile the functionσe is defined by the power-law functio
50]

e(φ)

{
0 forφ ≤ φc,

σ0((φ/φc)k − 1) forφ > φc,
σ0 > 0, k ≥ 1.

(2.3)

e assume here thatu∞ is a known constant. Thus, if w
tilize (2.2) and(2.3), the problem of determining suitab
odel functionsfbk(φ) andσe(φ) from observations reduc

o that of identifying the parameter vectore= (C, φc, σ0, k)T.
The complete model for the centrifugation of a suspen

f an initial concentrationφ0 =φ0(r) is given by(2.1)togethe
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with the initial condition

φ(r,0) = φ0(r), r ∈ [R0, R], (2.4)

where we assumeφ0(r) ∈ [0, φmax] for r ∈ [R0, R], and the
kinematic boundary conditions(
ω2rb

g
fbk(φ) + ∂A(φ)

∂r

)
(rb, t) = 0,

t > 0, rb ∈ {R0, R}, (2.5)

which express that the flux throughr =R0 andr =R is zero.
It is well known that solutions of the initial-boundary value

problem(2.1), (2.4), (2.5)develop discontinuities due to both
the non-linearity of the flux and the degenerate diffusion term,
and have to be characterized as weak solutions. To ensure
uniqueness, a selection criterion or entropy condition has to
be stated to select the physically relevant one among several
weak solutions. The precise statement of the solution con-
cept, i.e., the sense in which we understand adiscontinuous
function to be solution to the initial-boundary value prob-
lem, requires mathematical preliminaries that are beyond the
scope of this contribution and is therefore omitted here; see
[33] for details. The proof of existence and uniqueness of an
entropy solution of the direct problem is outlined in[13].

Simulations of centrifugation processes obtained by nu-
merical solution of the governing equation(2.1) along with
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sured at a fixed radiusr. To formalize the possible choice
of observations, we assume thatφ̂(r, t) is piecewise constant
on rectangles of size�r̂ × �t̂. Thus, the observation data is
given on a structured grid̂Q with

Q̂:={r1, . . . , rĴ } × {t1, . . . , tN̂} ⊂ Q̄T:=[R0, R] × [0, T ].

The aim is to determine the parameter vectore for which the
solution of the model problem,φ(r, t), approximates best the
observed datâφ(r, t) (in a sense yet to be described). That
solution φ =φ(e) depends on the chosen parameters since
the constitutive functionsf= f(e) andA=A(e) do. This uni-
versal dependence of both the solution and the constitutive
functions on the parameters will be suppressed for notational
convenience.

The parameter identification problem can be written as
a constrained optimization problem, where the constraint
is given by the direct initial-boundary value problem(2.1),
(2.4), (2.5)in its appropriate weak formulation. Thus, the op-
timization problem can be written as “minimizeJ(φ) under
the constraintφ =φ(e)”, where the ‘cost function’J=J(φ)
measures the quality of approximation. That cost function
depends on the parameter vectoremediated by the model
solution. A natural choice is the integrated squared distance
between the observed dataφ̂ and the solutionφ =φ(e) of the
model function, which gives rise to the cost function

J
1
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2.4) and(2.5) are presented in a series of previous pa
13,33,43,51–53], and will not be repeated here. Exact so
ions for the special case of an ideal suspension withA≡ 0 are
etermined by the method of characteristics in[10,11] (see
lso[47]). Finally, we mention that the model(2.1)–(2.5)has
ecently been extended to polydisperse suspensions fo
ompressible sediments[54].

For a suspension forming a compressible sediment
heneverA �≡ 0, our model predicts the formation of tw
oving interfaces, the suspension–supernate interface

ng towards the outer radius, and the suspension–sed
nterface, at which the concentration exceeds the critical
entrationφc, rising from the outer wall. The former is
urved shock that merges with the sediment–suspensio
erface after a finite time that is usually referred to as cri
ime. Furthermore, the concentration of the suspensio
ated between these two interfaces is not constant (as
ravity case), but decreases as a function of time. The sy
sually quickly attains a steady-state sediment profile.

. Mathematical formulation of the parameter
dentification problem

.1. The inverse problem as an optimization problem
ith PDE constraint

The observation data are calledφ̂(r, t), and may consist o
oncentration profiles as a function ofr, each correspondin
o one or several fixed timest, or of concentrations me
(φ(e)):=
2 QT

(φ(r, t) − φ̂(r, t))
2
δQ̂(r, t) dt dr, (3.1)

hereδQ̂(r, t) = 1 if (r, t) ∈ Q̂ and δQ̂(r, t) = 0 elsewhere
ince first-order equations generally have discontinuou

utions, the governing Eq.(2.1) as constraint onφ =φ(e) is
eplaced by its weak form

E(φ, p; e)

:= −
∫∫

QT

{
φ
∂p

∂t
+ f (φ, r)

∂p

∂r
+ A(φ)

∂2p

∂r2

+ s(φ, r)p

}
dt dr +

∫ R

R0

φp|Tt=0 dr

+
∫ T

0
A(φ)

(
∂p

∂r
− σ

p

r

)∣∣∣∣
R

r=R0

dt = 0, (3.2)

here

f (φ, r):= − ω2r

g
fbk(φ) − σ

r
A(φ),

s(φ, r):=g

[
ω2

g
fbk(φ) + A(φ)

r2

]
,

ndp is a test function. Summarizing, we have formulated
arameter identification problem, where a parametrizati

he model equations for a given observation is sought,
ptimization problem, where the deviation of the model s

ion (which has to satisfy the model equations as constr
rom the observations is minimized with respect to the s
ll parameters.
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3.2. Lagrangian formulation

In classical optimization, it is a common technique to re-
formulate the optimization problem by adding (or subtract-
ing) the constraint to the cost function. Thus, we consider
the following Lagrangian for the problem “minimizeJ(φ(e))
with respect toe”

L(φ, p; e):=J(φ) − E(φ, p; e). (3.3)

The test functionp appears here as a generalized Lagrange
multiplier related to the constraintφ =φ(e). Furthermore,
sinceE(φ(e), p; e) = 0, we have that

L(φ(e), p; e) = J(φ(e)).

In the current application, the cost function is not
parametrized by the parameters but only depends on the pa-
rameters via the solution of the constraining partial differen-
tial equation. Therefore, the cost function cannot simply be
differentiated with respect to the parameters. However, opti-
mization algorithms for non-linear equations (as the conju-
gate gradient or the Newton method) rely on the total deriva-
tive of the cost function, which can here be rewritten and
specified with the help of the Lagrangian formulation as

w n
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the
eter

3.3. Adjoint state

The adjoint state is given by the requirement(3.5). The
conditions on the test functionp are obtained after the fol-
lowing straightforward derivation of the derivative ofL taken
in the direction ofδφ:〈
∂L

∂φ
(φ, p; e), δφ

〉

=
〈
∂J(φ)

∂φ
− ∂E(φ, p; e)

∂φ
, δφ

〉

=
∫∫

QT

δφ(r, t)(φ(r, t) − φ̂(r, t))δQ̂(r, t) dt dr

+
∫∫

QT

δφ

(
∂p

∂t
+ ∂φf (φ, r)

∂p

∂r

+ a(φ)
∂2p

∂r2 +∂φs(φ, r)p

)
dt dr−

∫ R

R0

δφ(r, T )p(r, T ) dr

+
∫ T

0
δφa(φ)

(
∂p

∂r
− σ

p

r

)∣∣∣∣
R

r=R0

dt.

The test functionp has to be determined in such a way that
this quantity vanishes, which leads to the adjoint equation

2
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dJ(φ(e))
de

= dL(φ(e), p; e)
de

+ dE(φ(e), p; e)
de

=
〈
∂L(φ(e), p; e)

∂φ
,

dφ(e)
de

〉
+ ∂L(φ(e), p; e)

∂e
,

(3.4)

here dE/de vanishes sinceφ(e) is considered to remain o
he manifold of solutions to the weak formulation. This f
al calculation of the total derivative of the cost funct

plits the problem of finding the total derivative of the c
unction up into two parts, corresponding to the two term
he last sum.

1) The gradient�eφ(e) (and therefore, dφ(e)/de) cannot be
calculated, since the solutionφ(e) is not an explicit func
tion of the parameters. This problem can be circumve
if we require that

∂L

∂φ
= 0, (3.5)

which leads to adjoint equations that restrict the
functionp. That idea has been introduced and explo
in previous works by James, Sepulveda and co-wo
[38,39,55,56].

2) Now, given a test function which lets the te
∂L/∂φ·dφ(e)/devanish, the calculation of the total deriv
tive of the cost function reduces to the calculation of
gradient of the Lagrangian with respect to the param
vector.
∂p

∂t
+ ∂φf (φ, r)

∂p

∂r
+ a(φ)

∂ p

∂r2

= −(φ − φ̂)δQ̂(r, t) − ∂φs(φ, r)p (3.6)

or (r, t) ∈QT, which is a conservation equation for the
nown functionp that arises as a backward problem with
nd and boundary conditions

(r, T ) = 0 for r ∈ [R0, R], (3.7)

∂p

∂r
− σ

p

rb

)
(rb, t) = 0 for t < T, rb ∈ {R0, R}. (3.8)

he adjoint problem is ill-posed since its solution is
nique: different initial settings could lead to the same
cribed end state.

.4. Gradient of cost function

Under the condition that the test functionp satisfies th
djoint equations and noting that the cost functionJ(φ(e))

s not a function of the parameter vectore (thus the gradien
eJ(φ(e)) vanishes), the total derivative of the cost func

s given by

dJ(φ(e))
de

=
∫∫

QT

(
df (φ, r)

de
∂p

∂r
+ dA(φ, r)

de
∂2p

∂r2

+ ds(φ, r)

de
p

)
dt dr, (3.9)

which can be used to employ any gradient algorithm in o
o minimize the cost function.
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4. Optimization scheme for identification

4.1.1. Discretization of the direct problem

We introduce a standard rectangular grid onQT by
choosingJ, N ∈N and setting�r := (R−R0)/J, �t :=T/N,
rj :=R0 + j�r and tn :=n�t. The numerical scheme for the
solution of the direct problem is written in conservative
form as a marching formula for the interior points (“interior
scheme”).

φn+1
j = φnj − λj(F

n
j+1/2(e) − Fn

j−1/2(e)) + µj(A
n
j+1/2(e)

−An
j−1/2(e)), j = 1, . . . , J − 1, (4.1)

where λj = µj:=�t/(rσj �r), supplemented by the initial
condition

φ0
j = φinit

j , j = 0, . . . , J (4.2)

and the following discrete versions of the boundary condi-
tions(2.5):

λ0F
n
−1/2(e) − µ0A

n
−1/2(e) = 0, (4.3)

λJF
n
J+1/2(e) − µJA

n
J+1/2(e) = 0. (4.4)

Inserting (4.3) and (4.4) into the formula for the interior
s ary
s ”).
T

F

a

A

a
-

t

c
r
T the
f in an
a s fo-
c fo-
c

4

ize
J

J

i iden-
t
i

For a given parameter vectore, we express the fact that
φ is a solution of the discrete direct problem(4.1)–(4.4)by
writing

E�(φ�(e), p�; e) = 0, (4.6)

which is the constraint to the optimization problem, and
whereE(·,·;·) is defined by

E�(φ�, p�; e) :=
∑

(j,n) ∈Q�

{φnj (pnj − pn+1
j )

+Fn
j+1/2(e)(λjp

n+1
j − λj+1p

n+1
j+1)

−An
j+1/2(e)(µjp

n+1
j − µj+1p

n+1
j+1)}

+
J−1∑
j=0

(φNj p
N
j − φ0

jp
0
j ). (4.7)

This expression is derived by multiplying the scheme for the
direct problem,(4.1)–(4.4), with pn+1

j , followed by summa-
tion over j andn such that in the final form, the sums are
taken over differences of the test function. This imitates the
continuous weak form, as is detailed in Appendix of[33].
The constraint(4.6)holds for all discrete test functionsp�.

4

L

i otal
d

w tly,
t t
∂ sec-
o La-
g or for
t

4

cheme,(4.1), we obtain update formulae for the bound
olution valuesφn0 andφnJ , respectively (“boundary scheme
he numerical flux

n
j+1/2 = Fn

j+1/2(φnj−K+1, . . . , φ
n
j+K, rj+1/2)

nd the numerical diffusion term

n
j+1/2 = An

j+1/2(φn
j−K̄+1, . . . , φ

n
j+K̄

, rj+1/2)

re specified inAppendix A.
The discrete versions of the unknownφ and the test func

ion p are denoted byφ� andp�, andφnj andpnj are the

onstant values ofφ� and p� at (j�r, n�t), (j, n) ∈ Q̂�,
espectively, wherêQ�:=(0, . . . , J − 1) × (0, . . . , N − 1).
he calculus for the discrete formulation is analogous to

ormal continuous one and thus will also be presented
nalogous structuring, whereas the formal calculus ha
used on the formal motivation, the discrete calculus is
used on an efficient scheme as result.

.2. Discrete optimization with PDE as constraint

The discrete minimization problem is stated as “minim
�(φ�(e)) with respect toe”, where

�(φ�(e)):=�r�t

2

∑
(j,n) ∈ Q̂�

(φnj (e) − φ̂nj )
2

(4.5)

s the discrete cost function. Here, we assume that the
ification points inQ̂ are actually grid points and̂Q� ⊂ Q�

s the index set associated witĥQ.
.3. Discrete Lagrangian formulation

The discrete Lagrangian formulation

�(φ�, p�; e):= 1

�t�r
J�(φ�) − E�(φ�, p�; e) (4.8)

s again used to allow an explicit expression for the t
erivative of the cost function

dJ�(φ�)

de
= �t �r

[
dL�(φ�, p�; e)

de
+ dE�(φ�, p�; e)

de

]

= �t �r

〈
∂L�(φ�, p�; e)

∂φ�
,

dφ

de

〉

+�t �r
dL�(φ�, p�; e)

de
,

hich again splits the problem up into two parts: If firs
he adjoint equation prescribes the test functionp� such tha
L/∂φ� = 0 and the corresponding term vanishes, then,
ndly, the gradient with respect to the parameters of the
rangian gives a descent direction of the parameter vect

he algorithm.

.4. Discrete adjoint state

The identity

∂L�
∂φnj

= ∂J�(φ�)

∂φnj
− ∂E�(φ�, p�; e)

∂φnj
(4.9)
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leads to the following adjoint scheme for the discrete test
functionpnj

pnj = pn+1
j −

K−1∑
k=−K

∂Fn
j+k+1/2(e)

∂φnj
(λj+kp

n+1
j+k−λj+k+1p

n+1
j+k+1)

+
K̄−1∑
$=−K̄

∂An
j+$+1/2(e)

∂φnj
(µj+$p

n+1
j+$ − mj+$+1p

n+1
j+$+1)

−(φnj (e) − φ̂nj )δQ̂�
(j, n)

for j = 0,1, . . . , J and n = N − 1, N − 2, . . . ,0

(4.10)

with the end condition

pNj = 0 for 0 ≤ j ≤ max{K, K̄}
and J − max{K, K̄} + 1 ≤ j ≤ J, (4.11)

and we consider the conventional notation

Fn
k+1/2 = An

$+1/2 = 0 for $, k ≤ 1 and $, k ≥ J.

4.5. Discrete gradient of cost function

∇

w

∇

fi
en-

d ins
t de-
s the
g r
t
a -
r eme
( ided
i

4

fol-
l that
o sh
w vec-
t To

determine an improved parameter vectore(k+ 1) proceed as
follows:

(1) Solve the direct problem numerically using the numerical
scheme(4.1)–(4.4)(or one of its implicit or semi-implicit
variants), and using the parameter vectore=e(k). This
yields a discrete solutionφ� =φ�(e).

(2) Use the solutionφ�(e) to solve the discrete adjoint prob-
lem defined by the adjoint scheme(4.10)and the corre-
sponding end condition(4.11)when the solution to the
direct problem (in Step 1) has been calculated by an ex-
plicit scheme. If an implicit scheme has been used in Step
1, then also an implicit version of the adjoint scheme has
to be used. An example of a suitable implicit adjoint
scheme is given in Section5. The result of Step 2 is a
specific discrete test functionp�.

(3) Use an explicit formula for the discrete gradient of
the cost function, for example the one given by(4.12),
(4.13)when Steps 1 and 2 have been handled by explicit
schemes, to calculate a discrete gradient�eJ�(e) of the
cost function.

(4) Use the discrete gradient�eJ�(e) to find an improved
parameter vectore(k+ 1) for example by a conjugate gra-
dient method.

(5) If e(k+ 1) is a parameter vector of sufficient quality (for ex-
ample, when‖e(k+ 1) −e(k)‖ is small enough), then stop;

1.

5

tion
o omo-
g
0
w u-
l e
c
a en-
s ion
g

s of
o -
t
a ed by
a ex-
p dis-
c g
C

T
s s of
� nal
t fully
The discrete gradient of the cost function

eJ�(e) = �r�t∇eL�(φ�(e), p�; e)

= −�r�t∇eE�(φ�(e), p�; e) (4.12)

here

eE� =
∑

(j,n) ∈Q∆

∇eFn
j+1/2(e)(λjp

n+1
j − λjp

n+1
j )

− ∇eAn
j+1/2(e)(µjp

n+1
j + µj+1p

n+1
j+1) (4.13)

nally gives the steepest descent direction.
Note that the calculus performed up to now is indep

ent of the numerical flux function. Now, it only rema
o specify how the derivatives of the numerical flux (as
ired in(A.2)) are obtained, i.e. “explicit” expressions for
radients∇eFn

j+1/2 and∇eAn
j+1/2 and, more important, fo

he partial derivatives∂Fn
j+k+1/2/∂φ

n
j for k=−K, . . ., K− 1

nd∂An
j+$+1/2/∂φ

n
j for $ = −K̄, . . . , K̄ − 1 need to be de

ived. These quantities are required in the adjoint sch
4.10). Explicit expressions for these derivatives are prov
n Appendix A.

.6. The parameter identification algorithm

The discrete calculus can be summarized to give the
owing parameter identification algorithm. We assume
bservation datâφ are given on part of a grid with me
idth (�t, �x), and we assume that a start parameter

or e=e(k) is given (k= 0 when the algorithm is started).
otherwise, increasek by one and start again with Step

. Numerical examples

The numerical examples refer to the batch centrifuga
f a suspension whose initial concentration is chosen h
eneously asφ0 = 0.07 on the domainr ∈ [R0, R] = [0.06 m,
.3 m]; the flux function is chosen in accordance with(2.2),
hereu∞ = 0.0001 m/s,C= 5 andφmax= 0.66, and the ang

ar velocityu is such thatRω2 = 10,000 g. Additionally, w
onsider the power law function(2.3)with σ0 = 5.7 Pa,k= 9
ndφc = 0.1 for the effective solid stress; and finally, the d
ity��= 1660 kg/m3 and the usual gravitational accelerat
= 9.81 m/s2.
In these numerical examples, we consider two kind

bservation data: a profile of concentration att=T as a func
ion of r, and a solution profile at the fixed positionr =R
s a function of time. These observations are generat
numerical simulation of the direct problem with the

licit second-order Engquist–Osher scheme and with the
retization parametersJ= 200 andN such that the followin
FL condition (cf.[43]) holds:

Rω2

g
max

φ∈ [0,φmax]
|f ′

bk(φ)|�t
�r

+ 2 max
φ∈ [0,φmax]

a(φ)
�t

(�r)2
< 1.(5.1)

he stability requirement imposed by(5.1) to the explicit
cheme implies that we need extremely small value
t(≈(�x)2), which considerably increases computatio

ime. This disadvantage is removed by considering a
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implicit scheme which is unconditionally stable. Thus, for
the identification results presented we consider the following
first-order implicit discretization of(3.9):

φn+1
j = φnj − λj(F

n+1
j+1/2(e) − Fn+1

j−1/2(e))

+µj(A
n+1
j+1/2(e) −An+1

j−1/2(e)), φ0
j = φinit

j ,

λ0F
n+1
−1/2(e) − µ0A

n+1
−1/2(e) = 0,

λJF
n+1
J+1/2(e) − µJA

n+1
J+1/2(e) = 0. (5.2)

For eachn= 0, . . ., N− 1, we have in(5.2) a non-linear
system of sizeJ× J, which is solved using the method of
Newton–Raphson.

In all tests we considerN=J. The weak formulation
E� =E�(φ�(e), p�; e) is given by

E� =
∑

(j,n) ∈Q�

{φnj (pnj − pn+1
j )

+Fn
j+1/2(λjp

n
j − λj+1p

n
j+1)

−An
j+1/2(µjp

n
j − µj+1p

n
j+1)}

+
J∑

j=0

{(φNj + λj(F
n
j+1/2 − Fn

j−1/2) − µj(A
N
j+1/2

T elow
a on
(

ified
f n
J

e

I on-
j rch
a

5
o

r
o

J

L a-
t

with entries

anj,j−1 = λj−1
∂Fn

j−1/2

∂φnj
− µj−1

∂An
j−1/2

∂φnj
, j = 2, . . . , J,

anj,j = 1 + λj

(
∂Fn

j+1/2

∂φnj
− ∂Fn

j−1/2

∂φnj

)

−µj

(
∂An

j+1/2

∂φnj
− ∂An

j−1/2

∂φnj

)
, j = 1, . . . , J − 1,

anj,j+1 = −λj+1
∂Fn

j+1/2

∂φnj
+ µj+1

∂An
j+1/2

∂φnj
,

j = 1, . . . , J − 1, an0,0 = 1 + λ0
∂Fn

1/2

∂φn0
− µ0

∂An
1/2

∂φn0
,

anJ,J = 1 − λJ
∂Fn

J−1/2

∂φnJ
+ µJ

∂An
J+1/2

∂φnJ
.

Then Pn is the solution of the linear implicit adjoint
schemeAnPn=Pn+1 for n=N− 1, . . ., 0 with the end
condition pNj = (φNj − φ̂Nj )/aNj,j for j ∈ {0, 1, . . ., J}.
The gradient of the discrete cost function is given by
∇eJ�(e) =−�r∇eE�(φ�(e,p�;e)) where the gradient of the
discrete weak form with respect to the parameters is evaluated
f

∇

T -
fi d in
F sizes
o rical
i

T
E
1

J

1 268
288

1 991
467

2 849
645
−AN
j−1/2)]pNj − [φ0

j + λj(F
0
j+1/2 − F0

j−1/2)

−µj(A
0
j+1/2 −A0

j−1/2)]p0
j}. (5.3)

he adjoint scheme and the gradients which are given b
re obtained with the methodology developed in Secti4
including theAppendix A).

We use the conjugate gradient method in the mod
orm of Polak and Ribìere to minimize the objective functio
(φ(e)), starting with the initial vector

= (5.5,6.5,9.5,0.08) (5.4)

n order to solve the linear minimization step with the c
ugate gradient algorithm we employ Wolfe’s linear sea
lgorithm as described in[57].

.1. Example 1: Profile of concentration at t = T as
bservation

In this example we consider a rotating tube (σ = 0) and
adial profiles at fixed timeŝφ(r, T ) with T∈ {0.3 s, 1.2 s} as
bservation data, such that the cost function is given by

(φ) = 1

2

∫ R

R0

(φ(r, T ) − φ̂(r, T ))
2

dr. (5.5)

et Pn := (pn0, . . ., pnJ ), and denote, for the implicit calcul
ion of the adjoint scheme, byAn theJ× J tridiagonal matrix
rom

eE� =
∑

(j,n) ∈Q�

{∇eFn
j+1/2(λjp

n
j − λj+1p

n
j+1)

− ∇eAn
j+1/2(µjp

n
j − µj+1p

n
j+1)}

+
M∑
j=0

{[λj(∇eFN
j+1/2 − ∇eFN

j−1/2)

−µj(∇eAN
j+1/2 − ∇eA0

j−1/2)]pNj

− [λj(∇eA0
j+1/2 − ∇eA0

j−1/2)

−µj(∇eA0
j+1/2 − ∇eA0

j−1/2)]p0
j}. (5.6)

he identified parameters are shown inTable 1and the pro
les for the two different observation times are presente
ig. 2. These figures present the results with several step
f resolution and thus show the convergence of the nume

dentification scheme when the accuracy increases.

able 1
xample 1: the identified parameters for the observation profiles atT=0.3,
.2

T C σ0 k φc

00 0.3 5.500066 6.499970 9.499746 0.109
1.2 5.500434 6.499983 9.499801 0.110

50 0.3 5.499963 6.499959 9.499700 0.108
1.2 5.500173 6.499975 9.499766 0.109

00 0.3 5.500081 6.499966 9.499729 0.108
1.2 5.500364 6.499981 9.499813 0.109
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Fig. 2. Example 1: comparison of the observed and identified profiles atT= 0.3 (left) andT= 1.2 (right).

5.2. Example 2: Profile of concentration at
z = R̄∈ [R0, R] as observation

In the second example, we consider a cylindrical cen-
trifuge (σ = 1) and assume that a profileφ(R̄, t) with t∈ [0,
1.2] andR̄= 0.286 m is observed, that is, concentrations are
measured at a fixed (radial) location as a function of time.
This leads to the cost function

J(φ) = 1

2

∫ T

0
(φ(R̄, t) − φ̂(R̄, t))

2
dt. (5.7)

In this case, the adjoint scheme is given byAnPn=Pn+1 +c
for n=N− 1, . . ., 0 with the end conditionpNj = 0, and where

the column vectorc= (c1, . . ., cJ)T is given by

cj =
{
φnj − φnj if R̄∈ [rj−1/2, rj+1/2],

0 otherwise,
j = 1, . . . , J.

The gradient is calculated from
∇eJ�(e) =�t∇eE�φ�(e, p�; e), where ∇eE� is given
by (5.6).

The numerically identified parameters, starting from(5.4),
are shown inTable 2and the profiles are given inFig. 3.
Fig. 3. Example 2: comparison of the observed and identified pro
files at the boundaryr =R= 0.3 with temporal resolution�t= 0.012.
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Table 2
Example 2: the identified parameters for the observation profileR̂=R= 0.3

J C σ0 k φc

100 5.500140 6.499936 9.499538 0.109727
200 5.500043 6.499962 9.499705 0.110450

6. Conclusions

This paper has demonstrated that the calculus of inverse
problems, which at first seems quite technical, helps to solve
one of the fundamental problems in particle technology and,
in particular, solid–liquid separation, namely the identifica-
tion of rheological model functions. The parameter identifi-
cation framework outlined herein is flexible enough to handle
both tube and basket centrifuges (as well as gravity settling
systems, which are treated in[34]) in conjunction with: (a)
radial concentration profiles measured at a discrete number
of times, (b) temporal concentration profiles measured at a
fixed radial position, and (c) full measurements of concentra-
tions as functions of position and time, where the positions
and times assume values from whole intervals. Measurements
leading to data of type (c) are at present technically uncon-
ceivable for rotating systems, but can be obtained easily for
gravity settling in resting columns[34]. It should be pointed
out, however, that accurate concentration measurements of
type (a) for rotating tubes and using light extinction are re-
ported in[27,29,32], while type (b) measurements of con-
centration at a fixed radial position in a basket-type plate-like
centrifuge by the method of suctioning probes are reported in
[58]. Although, the latter method probably requires a larger
total time interval (that is, a low-to-moderate angular veloc-
ity), these references illustrate that it is realistic to assume
t ndeed
a

am-
e isely
p ex-
p eter
t r, we
o ay
v
fi e
c here
a rong
t
c ram-
e well
t t to th
i ution
t and
t s not
t files
o e of
φ leads
t

tion with respect to each of the parameters involved, which
remains to be done in future work.
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Appendix A. Derivatives of numerical fluxes

The numerical scheme(4.1) is based on the non-
conservative form(2.1)of the governing equation. Thus, the
numerical fluxesFn

j+1/2 approximate the physical fluxf(φ,

r) =−ω2r1+σ /fbk(φ)/g, andAn
j+1/2 is an approximation of

A := rσ∂rA(σ). Here, we consider the forward finite differ-
ence approximation of∂rA, which gives

An
j+1/2:=A(φnj+1) − A(φnj )

�r
rσj+1/2. (A.1)

We employ the numerical flux function corresponding to the
E
fi

F

I e nu-
m e
f
i eads
t

F

w
i

the
p -
l t
t nt of
t

i o-
d rs,
hat the measured data used in Examples 1 and 2 are i
vailable.

Finally, we should comment on the quality of the par
ter identification in these examples, which more prec
resent problems of parameter recognition. One would
ect that the scheme accurately reproduces the param

hat have actually been used for the simulation. Howeve
bserve inTables 1 and 2that the identification moves aw
ery little from the initial guess values ofC, σ0 andk speci-
ed by(5.4), while there are considerable changes in thφc
omponent, namely from 0.08 to values around 0.11, w
s the value that is actually used is 0.10. It is however, w

o presume that the method is flawed, sinceFigs. 2 and 3
learly illustrate that the profiles calculated using the pa
ters identified by our numerical method approximate

he observed data. Rather, these examples seem to aler
ll-posedness of the problem, which means that the sol
o the identification problem in general fails to be unique,
herefore the method may converge to a solution that i
he intend one. Moreover, it appears that the solution pro
f the direct problem depend very critically on the choic
c, and to a lesser degree on the other parameters. This

o the problem of determining thesensitivitiesof the solu-
s

e

ngquist–Osher generalized upwind scheme[17,43,46]de-
ned by

EO(u, v, r):=f (0, r) +
∫ u

0
max{∂sf (s, r),0} ds

+
∫ v

0
min{∂sf (s, r),0} ds. (A.2)

n the present application, where the dependence of th
erical flux on the positionr is of multiplicative type, and th

unctionf(·, r) has only one single maximum, denotedum, the
ntegrals in this definition can be easily evaluated, and l
o the explicit formula

EO(u, v, r) =




f (u, r) foru ≤ um, v ≤ um,

f (u, r)

+f (v, r)

−f (um, r) foru ≤ um, v > um,

f (um, r) foru > um, v ≤ um,

f (v, r) foru > um, v > um,

(A.3)

hich is used for the evaluation ofFn
j+1/2 be specified below

n (A.5).
We now deal with the differentiation with respect to

arameters. In view of(A.2) and(A.3), the problem of calcu
ating the gradient of the numerical fluxFn

j+1/2 with respec
o the parameters is shifted to the calculation of the gradie
he fluxf. In addition, from(A.1) the calculation of∇eAn

j+1/2

s given in terms of∇eÂ. In our application, the terms intr
ucing the dependence onr do not depend on the paramete
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i.e. we do not deal with shape optimization. Thus,∇eFn
j+1/2

is calculated in terms of∇ef (φ, r) = r1+σ∇efck(φ), where
fck(φ) =−�2fbk(φ)/g and∇eAn

j+1/2 is calculated in terms of
∇e by

∇eAn
j+1/2:= rσj+1/2

�r
(∇eA(φnj+1) − (∇eA(φnj )).

To provide expressions for the derivatives with respect to
the unknown, we note that̄K = 1 in (A.1), which implies the
following local derivatives ofAn

j+1/2:

∂An
j+1/2

∂φnj
= −a(φnj )rσj+1/2

�r

and

∂An
j+1/2

∂φnj+1
= −a(φnj+1)rσj+1/2

�r
.

The local derivatives of the numerical fluxes with respect to
the solutionφnj are, for the first-order scheme withFn

j+1/2 =
FEO(φnj , φ

n
j+1, r

n
j+1/2) (i.e.,K= 1) and as a consequence of

(A.2), given by

∂Fj+1/2
n = max

{
∂f (φnj , rj+1/2)

n ,0

}
,

O e can
b own
b

s

w

M

i the
l

a

χ

which select the active slope such that

snj = MM(s−j , s
0
j , s

+
j ) = χ−

j s
−
j + χ0

j s
−
j + χ+

j s
+
j .

In terms of the reconstructions of the solution at the cell
boundaries

φR
j :=φnj + �r

2
snj , φL

j :=φnj − �r

2
snj , (A.4)

the numerical flux for the second-order scheme used in(4.1)
is based on the evaluation

Fn
j+1/2 = FEO(φR

j , φ
L
j+1, rj+1/2). (A.5)

From(A.4), we see that in this case,K= 2. An application of
the chain rule shows that the local derivatives of the second
order numerical flux are given by

∂Fn
j+1/2

∂φnj−1
= ∂Fn

j+1/2

∂φR
j

∂φR
j

∂φnj−1
,

∂Fn
j+1/2

∂φnj
= ∂Fn

j+1/2

∂φR
j

∂φR
j

∂φnj
+ ∂Fn

j+1/2

∂φL
j+1

∂φL
j+1

∂φnj
,

∂Fn
j+1/2

∂φnj+1
= ∂Fn

j+1/2

∂φR
j

∂φR
j

∂φnj+1
+ ∂Fn

j+1/2

∂φL
j+1

∂φL
j+1

∂φnj+1
,

n n L

w

a

a

w re
i

∂φj+1 ∂φj

∂Fj+1/2

∂φnj+1
= min

{
∂f (φnj+1, rj+1/2)

∂φnj+1
,0

}
.

n the basis of the numerical flux, a second-order schem
e constructed with a linear reconstruction of the unkn
y the slopes

n
j = MM

(
θ
φnj − φnj−1

�r
,
φnj+1 − φnj−1

2�r
, θ

φnj+1 − φnj

�r

)
,

here the standard minmod function

M(a, b, c):=




min{a, b, c} if a, b, c > 0,

max{a, b, c} if a, b, c ≤ 0,

0 otherwise

s used to ensure the TVD property. In order to facilitate
atter calculus, we introduce the local slopes

s−j :=θ
φnj − φnj−1

�r
, s0j :=

φnj+1 − φnj−1

2�r
,

s+j :=θ
φnj+1 − φnj

�r

nd the indicator functions

∗
j :=




1 if s∗j = max{s−j , s0j , s+j } > 0 or

s∗j = min{s−j , s0j , s+j } ≤ 0,

0 otherwise,
∂Fj+1/2

∂φnj+2
= ∂Fj+1/2

∂φL
j+1

∂φj+1

∂φnj+2
,

here

∂Fn
j+1/2

∂φR
j

= max

{
∂f (φR

j , rj+1/2)

∂φR
j

,0

}

nd

∂Fn
j+1/2

∂φL
j+1

= max

{
∂f (φL

j+1, rj+1/2)

∂φL
j+1

,0

}
,

nd where the derivatives ofφR
j andφL

j+1 are evaluated from

∂φR
j

∂φnj−1
= �r

2

∂snj

∂φnj−1
,

∂φR
j

∂φnj
= 1 + �r

2

∂snj

∂φnj
,

∂φR
j

∂φnj+1
= �r

2

∂snj

∂φnj+1
,

∂φL
j

∂φnj−1
= −�r

2

∂snj

∂φnj−1
,

∂φL
j

∂φnj
= 1 − �r

2

∂snj

∂φnj
,

∂φL
j

∂φnj+1
= −�r

2

∂snj

∂φnj+1
,

hich are a consequence of(A.4). The slope derivatives a
n turn given by

∂snj

∂φnj−1
= − θ

�r
χ−
j − 1

2�r
χ0
j ,

∂snj

∂φnj
= φ

�r
(χ−

j − χ+
j ),

∂snj

∂φnj+1
= 1

2�r
χ0
j + θ

�r
χ+
j .
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38] F. James, M. Seṕulveda, Parameter identification for a model
chromatographic column, Inv. Prob. 10 (1994) 1299–1314.
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